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I.  INTRODUCTION 

The calculation of non-adiabatic coupling matrix elements between 
adiabatic states has traditionally been a very difficult problem.  Recent 
studies have relied on the existence of a compact diabatic or pseudo-diabatic 
basis, or on finite difference methods.  We have recently proposed an 
analytical method of obtaining first-order non-adiabatic coupling matrix 
elements (NACMEs).  In our approach we employ a state-averaged MCSCF procedure 
to define a common orbital basis.  With a few simple modifications we are then 
able to make use of the machinery developed to calculate CI gradients and 
MCSCF second derivatives to obtain the desired quantities.  In fact, the 
methods employed to obtain MCSCF wavefunctions, MCSCF second derivatives, 
multi-reference CI gradients and NACMEs can be cast into one unified and 
compact framework. 

It is the purpose of this manuscript to outline the methods used to 
obtain energy derivatives and NACMEs.  The first section will be devoted to an 
outline of the second-order MCSCF procedure employed in the ALCHEMY II program 
package.  In the second section, we show how MCSCF derivatives can be fit 
neatly into this package and finally, we show that analytical NACMEs can be 
obtained within this framework if a common orbital set is used to describe 
both states. 

A.  Second-Order MCSCF Methodology 

In this section, we outline the second-order MCSCF method employed in the 
ALCHEMY II series of programs.   The construction of the orbital hessian is 
completely vectorizable and requires no formula tape.  The CI variations are 
handled directly in the CSF basis, so that large CI expansions can be 
addressed.  Many of the matrices constructed as precursors to the orbital 
hessian are retained and used to construct the orbital contribution to the 
inhomogenious portion of the coupled-perturbed MCSCF (CP-MCSCF) equations. 
Similiarly, the code employed to directly compute the result of multiplying 
the Cl-orbital coupling portion of the MCSCF hessian times a trial vector is 
used to construct the CI contribution to the inhomogeneous portion of the CP- 
MCSCF equations. 

' In the discussions which follow, I, J, K, L will be used to denote 
inactive orbitals. A, B, C, D will be used to denote active orbitals, R, S, T, 
U will be used to denote any orbital in either the inactive, active, or 
virtual spaces, and a, b, c, d, will be used to denote atomic orbitals.  The 
wavefunction will be represented as follows, 

* = ^ VP ^  . ^^^ 
p -'    ; / ^   ■ • ' 

where (^   represents our CSF basis and C^ is an element of the CI vector.  The 
energy expression is partitioned into an inactive portion, an inactive-active 
portion, and a purely active portion. 



* ^ L "- " 4M <4?-n>' <» I AB 

' Is °-'- * .LB °-- ^™ 
= <C|H|C> 

where 

h^U = <T|h|u>, 

J^y = <RS|i|TU>, 

K^y = <RT|i|sU>. 

DAR = E  C  k   C 
pq  P  P^  ^ 

^AB 

and 
ABCD 

pq ' pq 
°ABCD ~ ^  ^p'^     "^q 

AB     ABCD 
k  and k    are spin-coupling constants,  h and g are the usual one and two 
elictron operators appearing in the Born-Oppenheimer hamiltonian. D._ and 
D ABCD are the elements of the one and two-particle density matrix 

'AB 

respectively 
expone 

tively.  Unitary orbital variations are introduced by means of an 
ntial operator containing only non-redundant terms,  ^ 

-A   ,     12 
U=e=l-A+-rA+... 

(3) 
= UQ + U^ + U2 + ... 

The elements of A are our variational parameters.  The energy expression is 
expanded to second-order in A and then differentiated.  First-order variations 
and second-order terms arising from U2 are obtained by constructing a 
Lagrangian matrix, 

CD 
LTA = 2{E D^gh^g . 2  E  D^3^^ J^^} (4) 

o BCD 

Second-order terms arising from simultaneous first-order variations are 
obtained by first constructing a Y matrix. 

Y(AT)(BS) - ^^AB \s  *  ^  ^ABCD "^TS 

+ (5) , ^  , .K    CD ^ ,K    DC. ^^' 
^   ^     ^^ABCD ^TS ^  ^ABCD ^TS^ CD 

= Y^« 
TS 



= Y  , for all T, S 

Vi T 

here d  and d    are scaled elements of the one and two-particle density 
matrix.  The scaling factor depends only on the symmetry of the indices of the 
density matrix elements, (whether A=B , C=D, or AB=CD).  Similiarly, d^   is 
generated by scaling the D^^gp density matrix element.  It is important to 
note that the one-electron and coulomb contributions to the Y matrix, Y"^, can 
be contracted and used to construct the Lagrangian. •'■ ^~°  The Y matrix and the 
Lagrangian are constructed by multiplying a scaled density element times a 
coulomb or exchange matrix, a procedure which is readily vectorizable. 

The Y matrix is partitioned into inactive-inactive, inactive-active, and 
active-active blocks.  The inactive-inactive block can be constructed by 
weighting the coulomb and exchange matrices with a small number of 
constants.  For example, an off-diagonal matrix in the inactive-inactive sub- 
block of the Y matrix is constructed from only three terms, 

The inactive-active portion of the Y matrix requires only scaled one-particle 
density matrix elements. 

„AI   ^ ,,J       RI ^ ,K ,,BI   .K'*" „IB, ,^. 
\s = I   ^^B ^TS ^ '^AB ^TS '  ^B Ss^ "       '     ^^^ 

B 

The partitioning of the Y matrix is computationally attractive as it reduces 
the number of matrices which need to be held in core at one time.  In 
addition, it provides the flexibility of computing the inactive-inactive sub- 
block or the inactive-active sub-block directly as discussed by Bacskay  and 
Olsen, et al.,   respectively.  In addition, the occupied-virtual, occupied- 
virtual portions of the matrix can be combined with Lagrangian contributions 
to generate an occupied-virtual, occupied-virtual sub-blocks of the orbital 
hessian, which need not be kept in core. 

The construction of the orbital hessian proceeds as follows, 

(1) A reduced integral transformation is used to form the J and K 
matrices in the ao basis and to calculate the integrals needed to perform the 
CI, 

(2) In a two step MCSCF procedure the CI calculation is then carried 
out, 

(3) The CI vector is used to construct the unique elements of the one 
and two-particle density matrix over the active orbitals, 

(4) The density matrix elements are scaled and reordered in the case of 
exchange contributions, 



(5) The coulomb and fock operator contributions to the Y matrix are 
generated, 

(6) The Y matrix is contracted with the molecular orbitals to produce 
the active portion of the Lagrangian.  The inactive portion of the Lagrangian 
is generated from fock matrices, 

(7) The exchange contributions are added to the Y matrix, and 

(8) The Lagrangian is folded to produce the MCSCF orbital gradient (g/iR 
~ L^B - I'BA^ ^^'^   ^^^  ^ matrix is transformed to the mo basis, similarly folded 
and combined with Lagrangian contributions to produce the MCSCF hessian. 

The Newton-Raphson linear equations are solved iteratively, 

2 2 
3 E 8^E 

(8) 
90^ 909C 

2 2 
3 E 3 E 
3C30 g^2 / \ *W        \ ~^C 

where 60 and 6C represent orbital and CI variations, respectively, and the 
remaining portions of the MCSCF hessian are treated directly.   ^^  The 
second-order CI terms are handled with a direct-CI program. 

Multiplication of the Cl-orbital portion of the hessian times a trial 
vector are re-expressed as a gradient constructed with transition density 

12 matrices, 

12 or updated integrals, 

(fl^) 60 = gf = (H-E)«»|C> . (10) 

(SO 
The updated integrals used to construct g  are obtained as follows, 

\j 

<ABCD> ^° = E ((50  <TBCD> + 60   <ATCD> (11) 
lA IB 

+ 60^^ <ABTD> + 60^^ <ABCT>) 

where <TBCD> E <TB|g|CD>.  The integrals with three indices transformed 
<TBCD>, etc., have been generated earlier by contracting a coulomb matrix. 



II.  MCSCF SECOND-DERIVATIVES 

The formalism needed to generate a MCSCF force constant matrix has been 
discussed by a number of authors. '13-16 ^^^  method presented by Page, et 
al.,   has been incorporated in the MCSCF framework discussed above as it 
seems to offer a number of computational advantages.  In particular, the 
construction of the inhomogeneity in the CP-MCSCF equations, 

50" \       / -8^ - 
S^E ,h 
ao^ 9 09C 

,h a^E 
8C80 ac^ 

5C /     \ -gp - g 

(12) 

I / 
c  ^C 

involves the same code employed in the construction of the MCSCF Lagrangian 
and in the handling of the Cl-orbital coupling terms in the direct solution to 
the Newton-Raphson equations.  In this formalism, g*^ and g" are the orbital 
and CI gradients constructed with derivative ao integrals.  Similiarly, 
g  and g  are gradients constructed with updated integrals where one index 
has been transformed with the T matrix.  T  is an upper triangular matrix 
constructed from transforming the derivative ao overlap integrals into the mo 
basis, 

^RS  =  -   ^RS   '   S>^ 

rpOl =       _     JL      0°' 
RR 2     RR 

(13) 

and 

Ta 

Tgj^ =0,   S>R 

gQ  is generated by contracting the Y matrix with T"' and transforming the 
MCSCF Lagrangian with T"*, to first produce the T" Lagrangian, L  . 

where the summation over M runs over all occupied orbitals.  The code employed 
in the MCSCF program to produce the Lagrangian from Y  is also used at this 
point to contract the Y matrix. 

Ta . 
g   is obtained from the code employed in the direct solution of the 

Newton-Raphson equations to construct g  .  In this case the updated integrals 
are obtained by contracting the partially transformed integrals, <TBCD>, etc., 
with the T" matrix. 

The final expression for the first and second derivatives of the MCSCF 
energy expressions are. 



ab abed TA 

and 

E«^ = 2 <C^|H°' + H^"|C> + 

ab ^^  ^^       abed  ^^'^'^ ^'^^^  TA ^^ ^^ 

E  (L« . L^«)^^ U^^^ . E L^3 [Xf^ . E (T«^/33. l^^/.g) ] 
xA AD O 

where U  is the derivative of the mo eoeffieient matrix obtained by combining 
the solution of the CP-MCSCF equations and T^ .  These equations only employ 
quantities (L" and L °') used to construct the inhomogeneity in the CP-MCSCF 
equations, the solution to the CP-MCSCF equations themselves or terms 
generated from a SCF derivative package after the MCSCF density matrix has 
been transformed to the ao basis.  The actual assemblage of the MCSCF force- 
constant matrix, after the solution the CP-MCSCF equations and the contraction 
of the derivative ao integrals with ao density matrix, is extremely simple. 

III.  NON-ADIABATIC COUPLING MATRIX ELEMENTS 

The first-order non-adiabatic coupling matrix element, '~^^   (NACME), 

(M,N,a)    M'da N     M' N 

can be calculated in a straightforward manner if the same orbital basis is 
used to represent tne two states. "    In this case, the required 
wavefunction derivatives are obtained from a state-averaged CP-MCSCF equation. 
The NACME is broken down into two terms, 

= <o„|c",>*r »»■"(»», .v«^). (18) 
ST 

The first term is simply the overlap of a CI vector and a derivative CI 
vector.  For a MCSCF wavefunction, C., is obtained from the solution to the CP- 

N 
MCSCF equations, so this terra poses no new problems.  For a CI wavefunction, 
the direct evaluation of this term would require the solution of at least one 
CP-CI type of equation. 

10 



Multiplying Eq. 19 on the left by C^,   we find the usual perturbation 
expression, 

<%|CM>= (VV"' %I»^"VM>' (20) 

The term on the right-hand-side of this equation is a familiar one.  It is 
similar to the expression for a CI gradient.  The only difference is that we 
need to employ transition density matrices in place of normal density matrices 
in our equations.  The formal expression for a CI gradient is'"' .22 

^    ^/ab \b  J/abcd Sabcd ^ ^3 Ss "^S ^^1) 

The first term is the trace of the density matrix with derivative ao 
integrals, while the second term is the contraction of the CI Lasrangian with 

0 1 o     o 
the derivative of the mo coefficients.  Thus, 

Be - (%-%)-' a z^" h^, ^ z B:^:, S:,,, . ^fi^ ^,3,. (22, 
ab abed TS 

Therefore, we able to make use of the same code used to compute CI gradients. 

In the expression for the orbital contribution to the first-order NACME 
we are dealing with a one-electron operator so the resulting expression 
involves the trace of an one-particle density matrix and an overlap term, 

o L 

M N 
D '  is an element of a non-symmetric, one-particle transition density 
matrix.  U   is the derivative of the mo coefficients obtained from the 
solution to'the state-average CP-MCSCF equations, and V*^  is obtained by 
transforming half-derivative ao overlap integrals into tfte mo basis.  Two 
overlap terms are needed as the derivative of the molecular orbitals are 
expressed as,^^ . _ 

do   d.     /     \ a a 
  3— (xt) = X t + xt 
da  da 

x"t + 0U« 
(24) 

11 



where 0 are the molecular orbitals, x is a vector of atomic orbitals, and t is 
the mo coefficient matrix. 

^ST = \   ^S <^al^b>^T '  • ^ (25) 
ab ' .       , -i ■ 

and <x^|x > is a half-derivative overlap integral. 

The new terms required to compute a NACME are a square one-particle 
transition matrix and half-derivative ao overlap integrals.  The CI gradient 
package must also be modified to produce the required one and two-particle 
transition density matrices, while the MCSCF package need only be modified to 
compute a square one-particle transition density matrix. 

This formalism can be extended to analytically compute second-order 
NACMEs.  This requires the set-up of the second-order state-averaged CP-MCSCF 
equations and the code to compute a square two-particle transition density 
matrix.  A second-order CI NACME would require the solution of the first-order 
CP-CI equations. 

IV.  CONCLUSION 

A unified treatment of energy derivatives and non-adiabatic coupling 
matrix elements has been outlined.  We showed that in the case of both energy 
derivatives and NACMEs the final equations could be rewritten in a form that 
resulted in the efficient use of existing MCSCF or derivative methods. 

12 
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